Minimum Self-dual Decompositions of Positive Dual-minor Boolean Functions

نویسندگان

  • Jan C. Bioch
  • Toshihide Ibaraki
  • Kazuhisa Makino
چکیده

In this paper we consider decompositions of a positive dual-minor Boolean function $f$ into $f=$ $f_{1}f_{2}\ldots\ldots.f_{k}$ , where all $f_{j}$ are positive and self-dual. It is shown that the minimum $k$ having such a decomposition equals the chromatic number of a graph associated with $f$ , and the problem of deciding whether a decomposition of size $k$ exists is

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Formally Self-dual Boolean Functions in 2, 4 and 6 Variables

In this paper, we classify all formally self-dual Boolean functions and self-dual bent functions under the action of the extended symmetric group in 2, 4 variables, and give a lower bound for the number of non-equivalent functions in 6 variables. There are exactly 2, 91 (1, 3 respectively) and at least 5535376 representatives from equivalence class of formally self-dual Boolean functions (self-...

متن کامل

On Self-Dual Quantum Codes, Graphs, and Boolean Functions

A short introduction to quantum error correction is given, and it is shown that zero-dimensional quantum codes can be represented as self-dual additive codes over GF(4) and also as graphs. We show that graphs representing several such codes with high minimum distance can be described as nested regular graphs having minimum regular vertex degree and containing long cycles. Two graphs correspond ...

متن کامل

Construction of Linear Codes Having Prescribed Primal-dual Minimum Distance with Applications in Cryptography

A method is given for the construction of linear codes with prescribed minimum distance and also prescribed minimum distance of the dual code. This works for codes over arbitrary finite fields. In the case of binary codes Matsumoto et al. showed how such codes can be used to construct cryptographic Boolean functions. This new method allows to compute new bounds on the size of such codes, extend...

متن کامل

Decomposition of bent generalized Boolean functions

A one to one correspondence between regular generalized bent functions from Fn2 to Z2m , and m−tuples of Boolean bent functions is established. This correspondence maps selfdual (resp. anti-self-dual) generalized bent functions to m−tuples of self-dual (resp. anti self-dual) Boolean bent functions. An application to the classification of regular generalized bent functions under the extended aff...

متن کامل

On the Fractional Chromatic Number of Monotone Self-dual Boolean Functions

We compute the exact fractional chromatic number for several classes of monotone self-dual Boolean functions. We characterize monotone self-dual Boolean functions in terms of the optimal value of a LP relaxation of a suitable strengthening of the standard IP formulation for the chromatic number. We also show that determining the self-duality of monotone Boolean function is equivalent to determi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 96-97  شماره 

صفحات  -

تاریخ انتشار 1999